

Information Theory and Coding

Basics

Sterling's Approximation

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Approx. of Binomial Coeff

$$\binom{N}{r} \approx 2^{NH_2(r/N)}$$

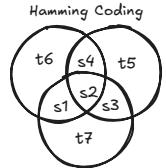
Probability

Bayes' Law

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

Product Rule

$$P(A \cap B) = P(A)P(B | A)$$



Source Coding Theorem

Statement

$$\frac{1}{N} H_\delta(X^N) < H(X) + \epsilon$$

Typical Sequence

$$T_\delta^{(N)} = \left\{ x^N \in \mathcal{X}^N : \left| \frac{1}{N} \log_2 P(x^N) - H(X) \right| < \beta \right\}$$

Asymptotic Equipartition Theorem

Probability

$$2^{-N(H(X)+\delta)} \leq \Pr(x^N) \leq 2^{-N(H(X)-\delta)}$$

Count

$$|T_\delta^{(N)}| \leq 2^{N(H(X)+\delta)}$$

Markov Inequality

$$\Pr(X \geq a) \leq \frac{\mathbb{E}[X]}{a}$$

Tschebyshev Inequality

$$\Pr(|X - \mu| \geq \epsilon) \leq \frac{\sigma^2}{\epsilon^2}$$

Symbol Codes

Kraft's Inequality

$$\sum_{i=1}^I 2^{-l_i} \leq 1$$

Expected Length

$$\bar{L} = \sum_{i=1}^I p_i l_i \geq H(X)$$

Equality

$$l_i = -\log_2 p_i \quad \forall i$$

Eg: Huffman Code

Stream Codes

1. Arithmetic codes
2. Lempel Ziv
3. Burrow's Wheeler

Compression close to entropy
Doesn't require a model
Improves Lempel Ziv

Jensen's Inequality

$$\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)]$$

Gibb's Inequality

$$D_{\text{KL}}(P \parallel Q) = \sum_x P(x) \log_2 \frac{P(x)}{Q(x)} \geq 0$$

Lempel-Ziv

s(n) (Index)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Bits Needed	1	1	2	2	3	3	3	3	4	4	4	4	4	4	4	4
(Pointer, New Bit)	(.1)	(0,0)	(01,1)	(10,1)	(100,0)	(101,0)	(110,0)	(111,0)	(1000,1)	(1001,0)	(1010,1)	(1011,0)	(1100,1)	(1101,0)	(1110,1)	(1111,0)
Pointer Binary Addr	0	0	01	10	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

$$H(X, Y)$$

$$H(X|Y)$$

$$H(Y|X)$$

$$H(X|Y)$$

Data Processing

IF $X \rightarrow Y \rightarrow Z$ is Markov Chain

$$p(z | x, y) = p(z | y)$$

then $I(X; Z) \leq I(X; Y)$

Fano's Inequality

$$H(W | \tilde{W}) \leq h_2(P_e) + P_e \log(|\mathcal{W}| - 1)$$

Shannon Capacity Theorem

Statement

$$C = \max_{P_X(x)} I(X; Y)$$

Proof

1. Achievability: Typical sets don't collide if $R < I(X; Y)$
2. converse: Fano + data processing = no rate beyond capacity

BSC	$1 - H_2(e)$
BEC	$1 - \epsilon$
Typewriter	$\log_2 \frac{ \mathcal{A}_X }{L}$

Message passing

1. Distributed & efficient
2. Sum Product makes marginalisation efficient

Perfect code

1. No free space in between codes
2. Not a good solution as it wastes lots of code words

LDFC

1. achieves data rates close to capacity
2. Sum product can be used to decode efficiently

Some other points

Symmetric Channel

- Each input row in the transition matrix is a rearrangement of the same probabilities.
- All inputs are treated equally.

Shannon Information

1. Ideal codeword length = Information Content
2. Average information content = Entropy

Channel Capacity

1. Entropy is maximised for uniform distribution discrete random variable.

Continuous Distribution

1. Mutual Information is maximised for Gaussian distribution under $E[x^2] \leq \sigma_x^2$

$$h(X) \leq \frac{1}{2} \log(2\pi e \sigma_x^2), \quad \text{equality iff } X \sim \mathcal{N}(\mu, \sigma_x^2)$$

Your own points