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Information Theory and Coding
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Some other Po?nts

Sterling's Approximation Hamwming Coding Measure O'F IV\":OFMQt}OV\
nl ~ ‘/2,m(ﬁ)" Probability Symmetric Channel
e ’ P(B| A)P(A) Entropy ZP )log, P(A;) - Each input row in the transition matrix is a
o Bayes' Law P(A|B)= ————_ "/ rearrangement of the same probabilities.
Approx. of Binowmial Coeff P(B) g e
H(X) -All inputs are treated equally.
N ~ o NH:(r/N) Product Rule P(AN B) = P(A)P(B| 4) Redundancy Roygm =1— T
r max Shannon Information

.

Joint Entropy H(X)Y) = ZZP z,y) logy P(z,y) 1. Ideal codeword lev\g‘tl« = Information Content
2. Average information content = Entropy

St/ml:ol Codes

Kraft's Tnequality Y 274 <1
=1

Source Coo(ing Theorem Conditional Entropy HY [X)= ZP %:P(y\Z)logzP(yiaE)

Channel Capacity

1. Entropy is maximised for uniform distribution

L N
Statement WH'S(X )< H(X)+e discrete random variable.

S Differential Entropy h(X)=- / f(z)log f(z) dz
Expected Length L= Zpili > H(X)
i=1

p(z,y) Continuous Distribution
N 5 . ) I
f Typical Seqeunce \ Equality li = —logypi Vi Mutual Information ZZP ny)log ey p(z)p(y) 1. Mutual Information is maximised For Gaussian
1 Eg: Huff Cod 2
™ - {xN cxN. ‘—NlogZP(xN) —H(X)‘ - B} g: Huffman Code I(X;Y) = H(X) H(X\Y) H(Y)— H(Y | X) distribution lunAer E[z?
- ple,y|2) L h(X) < =log(2meo,), equality iff X ~ N (g, 02)
Asyw\ptotic Eqipartition Theorem ]C::E\j;t:;fnl“\utua[ x| 2)= ZP ZZP S ) p(z | 2)p(y | 2) 2
wati
Stream Codes I(X;Y | 2) = H(X | 2) - H(X|Y,2) = H(Y | 2) - H(Y | X,7) ﬁ
Probability 2 NN+ < pr(zV) < 2~ NEHX)-) Your own Po?v\ts
™ NE) ) . Arithmetic codes Compression close | chain Rule H(X,Y) = H(X)+ HY | X) = HYY) + H(X | Y) = H(X) + H(Y) — H(X,Y)
Count [T;7 <2 to entropy
BX] 2. Lempel Ziv Doesn't require a Chain rule I(XY,2) = I(X;Y) + I(X;Z | Y)
Markov Inequality Pr(X > a) < = model o
Tschebyshev Tnequality  Pr(x -y > ) < L: 3. Burrow's Wheeler Improves Lempel Decomposing Entropy H(p,p2,.-.,p1) = Hp(p1) + (1 — pl)H( T 1_—1)1)
N Ziv
J i;tpropy Gaussian A(X) = %logz(Z‘lreaz)
Lem[oe[—Ziv J
Jensen's Inealuahtt/ #(E[X]) < E[p(X)] s(n) (index) 0 1 2 3 4 5 6 7 8 9 10 u 12 13 14 15
(I) Bits Needed 11 2 2 3 3 3 3 4 4 4 4 4 4 4 4
Gibb's I”e‘ﬂ‘“"l ity Dru(P | Q) = ZP (z)log2 20 (Pointer, New Bity (1) (00) (011) (10.) (1000) (1010) (1100) (111,00 (10001) (10010) (10101) (1011,0) (11001) (1101,0) (11101) (11110
k Pointer Binary Addr 0 0 01 10 100 101 110 1 1000 1001 1010 o1 1100 1101 1110 un )

Message passing

1. Distributed & efficient

2. Sum Product makes marginalisation
efficient

Perfect code

[ Shannon Capaci‘tt/ Theorem
Statement C= g}x{?jc)l (X;Y)

Proof

Data Processing
I Hx.¥) l If X -> Y -> Z is Markov Chain
p(z]2,y) =p(z|y)

then 1(X;2) < I(X;Y)

1. Achievablilty: Typical sets don't collide if R <
I(X;Y)

2. Converse: Fano + data processing = no rate
beyond capacity

Fano's Inequal’ty i“ 1= (0
EC 1-e
0V 1) = (R + Plog (¥~ 1) b"“"‘“’ Lol

1. o free space in between codes
2. Not a good solution as it wastes
lots of code

words,

LDPC

1. Achieves data rates close to
capacity

2. Sum product can be used to decode
effeciently

C
Rote(BER) R~ 17 mrny




